
NUMERICAL STUDY OF THERMAL FIELDS IN HIGH-SPEED 

ELECTRICAL HEATING OF POWDERED MATERIALS 

A. N. Khomchenko, A. V. Pilipchenko, 
A. I. Tsitrin, and L. D. Lutsak 

UDC 518.12:621.762 

Three calculation methods are considered for analyzing the temperature fields 
excited by an electrical current passing through a powdered medium, 

Heating of powdered materials by direct passage of electrical current accelerates sinter- 
ing, permits production of materials with new properties, and reduces energy expenditures 
for the process [i]. However, wide use of electrical heating has been restrained by insuffi- 
cient knowledge of the physics of the phenomenon and absence of sound recommendations for 
selection of optimal regimes. A question of primary importance is reducing nonuniformity of 
the heating of the powder mixture over volume and time [2, 3]. 

The rapid propagation of the temperature field in an electrically conductive powder is 
caused by intrinsic heat liberation, which is dependent on temperature. Such problems are 
nonlinear. The most suitable calculation methods are those with finite-element discretiza- 
tion over space and finite difference over time [4]. The finite-element discretization of 
the steady-state field was described in [3]. 

The entire system (Fig. la) can naturally he divided into eight elements. With consider- 
ation of symmetry it is sufficient to retain four elements (Fig. ib). The homogeneous ther- 
mally nonconductive cylindrical matrix ensures one-dimensional heat propagation along the 
cylinder axis OX in both directions from the sintering chamber. To decrease the temperature 
gradient, segments of the Poisson electrodes with increased electrical resistance are intro- 
duced - heaters (Fig. la). This levels the temperature field over the powder mixture volume. 
An explosion-like rise in the powder temperature, caused by a significant decrease in its 
electrical resistance, can be prevented by a special electrical circuit breaker, which rea- 
lizes an alternating (two-stage) heating process. The first stage consists of system heat- 
ing by intrinsic heat liberation in the powder and heaters, and the second, heat dissipation 
smoothing the time peaks of the temperature. 

Solution of the nonsteady-state problem involves minimization (for each moment of the 
time interval) of the following functional: 
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This  r e d u c e s  Eq. (1) t o  a sys tem 
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[c] 0 {~} + [K] {r} = {F}, (2) 
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where the thermal conductivity matrix [K] and the thermal load vector {F} are analogous [3]. 
The thermal conductivity matrix of the element is determined by the sum of volume and sur- 
face integrals: 

[k(e~] = [ Kx[BJtlBJ dV-{- ~ h[@]t[ @ldS, (3) 

while the thermal load vector has the form 

{ f ( : , }  = QEr S 
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(4) 
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Fig. i. Press-form: a) schematic 
diagram: PE) Poisson electrodes; 
PM) powdered mixtures; M)matrix; 
H) heater; b) calculation scheme 
for four finite elements. 

7 

o - -  3 e " -  .,~ 2"~ rr 
a--4.a,,," ~ .~  ~ " 

0 0 0  A . . i " 7  I, II ,J ' - '  F T'J  

"in t.+A% b 
a i I I I i I I i I I I I I J i 

0 I 2 3 * ~ 0 I 2 3 4, 5 t  

Fig. 2. Change in mean sinter ing temperature vs 
time step (a, At = 0.25 sec; b, 0.5 sec): 1) ex- 
periment [2] ; 2) calculation by e x p l i c i t  method 
(forward dif ference); 3) Krank--Nicholson method; 
4) implicit method (backward difference); I) un- 
stable solution; II) nonphysical oscillations, t, 
see. 

The solution of the steady-state problem leads to a new matrix [C], called the damping (heat 
capacity) matrix. For an individual element 

[c (e)] = ~ cp [ @ ] t [ ~ ] d V .  
y(e) 

The boundary conditions of the problem are taken as follows: in the center of the sintering 
chamber x = 0 the temperature gradient is equal to zero (a natural Neimann condition); on 
the face heat exchange occurs with the surrounding medium by a Newtonian law, with the heat 
exchange coefficient h being established empirically. Inthe calculations the value of h 
was varied over a wide range. The heat liberation produced by passage of the electrical cur- 
rent in the first and third elements (Fig. Ib) is modeled by the volume integrals in Eq. (4). 
A special subroutine is provided which considers the temperature dependence of Q. Similar 
subroutines are w~itten for K x and c. It is assumed that the parameters p and h are temper- 
ature-independent. Heat exchange is possible only through the faces of the system, so that 
the second term in Eqs. (3) and (4) will be nonzero only in the fourth element. For preli- 
minary (qualitative) analysis of the computation scheme simple linear elements are used. Re- 
finement of temperature profiles is achieved by use of quadratic elements. 

System (2) can be solved by an entire family [4] of computation schemes: 

where n = 0, i, 2, ... is the number of the time step. With the aid of a suitable parameter 
8 from Eq. (5) we obtain a concrete scheme for Eq. (2). The experimental data of [2] were 
compared with results of calculations by thethree best known finite-difference methods (Fig. 
2). 

In the explicit method (8 = 0) it is assumed that at time t n the temperature takes on 
the value {T} n, which is maintained over the entire time step At n and only at the end of the 
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Fig. 3. Temperature-distance 
curves (dashed line, initial 
distribution) for various 
times (digits along curves). 
s mm. 

interval t n + At n changes abruptly to {T} n+1 (Fig. 2a). On the other hand, in the implicit 
method (8 = i) at time t n the temperature changes abruptly from {T} n to {T} n+l and then re- 
mains equal to {T} n+1 for the entire time step. The Krank-Nicholson method (8 = 0.5) re- 
flects a linear temperature chahge. Even for constant thermal conductivity and specific 
heat coefficients the time step of the explicit method is limited by the condition At n < 
cp(Ax)2/2Kx, violation of which can lead to unstable solutions. The Krank-Nicholson method 
is usually considered unconditionally stable. However, in this case also oscillations of the 
solution cannot be excluded (Fig. 2b). In the present calculations results closest to ex- 
periment were obtained with the implicit method. The equations of system (2) were solved 
iteratively with multiply corrected coefficients. The temperature-dependent parameters Kx, 
c, and Q were recalculated with special subroutines for {T} n+1. 

Analysis of the numerical results allows choice of an optimal time step for each concrete 
case. This is a practical problem, since the discrete model is quite sensitive to the ratio 
between time and spatial steps. The experimentally established [2] avalancelike character 
of the powder heating process is confirmed by the calculations. Heating of the powder mix- 
ture is practically independent of the intensity of heat removal from the system faces, 
since the process lasts only 4-5 sec. This period is insufficient for the temperature wave 
to reach the face section. Typical curves interpolated for three points of each element for 
various times are shown in Fig. 3. 

NOTATION 

T(x, t), temperature of cross section x at time t; K x, internal thermal conductivity co- 
efficient; Q, heat source intensity; p, material density; c, specific heat; V, volume; q, 
thermal flux on boundary $I; h, heat exchange coefficient on boundary $2; T m, temperature of 
surrounding medium; [~], form function matrix for finite element; [B], form function deriva- 
tive matrix; [K], system thermal conductivity matrix; [C], specific heat matrix; t, matrix 
transposition operation; Atn, time step; Ax, step along axis OX. 
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